

YEAR 1 COMPUTING PLANNING - ALGORITHMS AND PROGRAMMING

Class: Term: Autumn 1 Subject: Computing Topic: Algorithms & Programming (making things move through instructions)

Differentiation and support Cross curricular links

SEN / EAL: Simplify tasks to focus on input and running a sequence. Provide children

with pre-set activities for them to program. Work in mixed ability pairs to support
learning. Symbol cards will help make links to activities.

GT: require additional, detailed information and provide greater opportunities for

making predictions. Online activities can be made more complex. Research
independently to apply skills in different situations. Support less able peers by assisting
them in debugging programs.

English: Instructional writing, using instructional language.
Maths: Directional language and position, angles and turns.
Science: How technology and inventors help us in the wider world.
Geography: Using and being familiar with maps and grids.
PSHCE: Collaborative problem solving, working with others to solve a task.

Key vocabulary for unit Curriculum objectives covered in unit:

Algorithm: An algorithm is a sequence of instructions and/or set of rules.
Sequence: A set of actions or events that must be carried out in the same order every time.
Debug: Finding where the sequence failed and predicting and solving the sequence, so that it

works/achieves the desired output.
Inputs: These are the means of communicating with computers e.g. keyboard and mouse
Outputs: These are the means by which the computer relays information e.g. printer or monitor
Code: The written symbol/number/word created for the device to move or do an action.
Sprite: A computer graphic or object that can be moved through an algorithm.
Program (noun): Code for a given task
Program (verb): Input the code for a given task

 Understand what algorithms are; how they are
implemented as programs on digital devices; and that
programs execute by following precise and unambiguous
instructions.

 Create and debug simple programs

 Use logical reasoning to predict the behaviour of simple
programs

 Recognise common uses of information technology
beyond school.

Overview

 In this unit, children will become familiar with instructions and commands to make an object move. This involves creating a sequence or series of step-by-step
instructions to move an object or to reach a goal. In formal computing language, remind children that this is called an algorithm.

 Children will discover (either through predicting and testing or through trial and error) that sometimes the sequence does not work as intended. Here the children will
need to evaluate what has happened in the sequence and how it might be resolved. In this instance, the children are able to ‘debug’ their programmes and improve them
to achieve the correct outcome or goal.

 This unit requires the children to ‘have a go’ and find out what might happen when they give an instruction to a device. Children will learn and build on previous
experiences and outcomes to predict and make informed decisions before they create a sequence.

 Please note; children may move through this unit at different paces depending on their existing experiences with computing devices. Allow for children to
develop and consolidate their learning week by week, before moving them on to the next activity or lesson. Encourage children to discuss, share ideas and
use logical reasoning, based on predictions and or past experiences, to debug their programmes.

https://www.saveteacherssundays.com/computing/year-1/721/

Unit Overview

Lesson 1: Creating sequences using words (unplugged)

Lesson 2: Creating sequences using code (unplugged)

Lesson 3: Programming a device

Lesson 4: Programming a sprite (one instruction at a time)

Lesson 5: Programming a sprite (several instructions at a time)

Lesson 6: Inputting programmes and debugging programmes

Need to organise at the start of the unit

Lessons 1 and 2: Book the hall

Lesson 2: Send letters home in advance for children to bring in programmable devices if would like them to do this

All Lessons: Have the display cards for the vocabulary that has been covered on display throughout lessons where children can see them e.g. under the IWB

You can access the complete Year 1 Computing Planning, and all

of the resources needed to teach each lesson, at:

https://www.saveteacherssundays.com/computing/year-1/721/

https://www.saveteacherssundays.com/computing/year-1/721/computing-planning-algorithms-and-programming/
https://www.saveteacherssundays.com/computing/year-1/721/

W LO Activities Resources Success Criteria

1

To understand
what a
sequence is

To create and
follow
sequences of
instructions

(45 mins)

This lesson will look at exploring the key concepts of instructional and directional language and involves creating
‘unplugged’ sequences
Children will also begin to explore how to ‘debug’ their sequences, if the program doesn’t achieve the correct objective
or outcome

Intro:
Ask the children to think of some things that they always do in the same order each day e.g. the steps in brushing their
teeth
Explain that these are examples of a ‘sequence’, emphasising that the steps in a sequence always have to be followed
in the same order each time the sequence is completed
With the children’s help, write the steps in some of the best examples of sequences that need to be completed in a
certain order e.g. getting dressed, having a shower etc
Exemplify how a sequence must be followed in the same order every time by using the example of brushing your teeth
e.g. you always have to pick up the toothbrush before you can put toothpaste on it – you cannot put toothpaste on the
toothbrush and then pick it up
Discuss with children how all of the things on the devices (computers, tablets, phones etc) that we use work by
following instructions that a person has given to them
Explain that we use sequences of instructions to tell devices and the software on them what they should do e.g. to tell
a robot how it should move
Explain that to ‘program’ a device, such as a robot, means to give it instructions on what it should do
Explain that when we program devices and the software on them, they will only do exactly what we tell them to do –
they cannot guess what we mean
Tell the children that they are all going to pretend to be robots and can only move when the teacher has given them an
instruction to do so, and can only move in that exact way i.e. they can only do what they have been ‘programmed’ to do
Introduce the key directional vocabulary for the lesson, using the vocabulary cards: forwards, backwards, left, right, left
turn and right turn
To help the children tell left from right:

 tell the children to make the letter L with their thumb and index finger on each hand – the left hand should
make the letter L the ‘right way round’

 stick the words left and right where the children can all see them
Ask the children what the difference between left / left turn and right / right turn is, and demonstrate this
Write a simple sequence for the children to follow e.g. ‘forwards, forwards, forwards, left, left, forwards, forwards’, and
tell the children to follow it
Ask the children how we could make these instructions better / shorter (by using numbers of steps e.g. ‘forwards 3, left
3, forwards 2’)
Explain that grown up computer programmers always try to write code in the best, shortest way possible
Explain that by writing this sequence for the robots (the children) and telling them to follow it, you have ‘programmed’
them
Explain that this is using the word ‘program’ as a verb (a doing word)
Explain that the word ‘program’ can also be used as a noun (a thing)
Explain that the written instructions are a program: a set of instructions for completing a given task – in this case
getting from A to B (from one point to another point)
Write some more sequences for the children to follow, constantly reinforcing the meaning of the words ‘sequence’ and
‘program’ (as a noun and as a verb):

 start with ‘forwards’ and ‘backwards’ only

 introduce ‘left’ and ‘right’

 introduce ‘left turn’ and ‘right turn’
If some children do not end up in the same place as the other children, discuss with the class why this might have
happened
Can also start to whisper a different / incorrect sequence to one or more children and then ask the children what the
difference might be between the sequence that most of them followed and the sequence that the others completed
Create a course and model how to complete the main activity
Debugging (the following introduces the idea of debugging but do not need to introduce the term ‘debugging’ in this

Setup courses in
advance of the lesson
(see ‘Main’ section of
lesson plan)

Hall or large space

Hoops, mats, cones,
bean bags

One set of instructional
language cards for
display:
1) print out, one per
page
2) enlarge
3) laminate
4) keep for next year

Enough sets of
instructional language
cards for each group:
1) print out with 6 on
page
2) photocopy
3) laminate
4) keep for next year

Paper and pencils and /
or whiteboards and pens

Assessment sheets

MUST:
give and follow one
instruction at a time
e.g. ‘forward 1’

SHOULD:
give and follow more
than one instruction at
a time e.g. ‘forward 1,
left 2, backwards 3’

COULD:
write complete
programmes, test them
and fix any errors

lesson):
1) create a course for one child to come and be a robot for
2) write a program for the child robot to follow to navigate the course, but have a deliberate error in the program

e.g. ‘left 2’ instead of ‘right 2’
3) ask the other children to think, pair, share to spot and correct the error in the program
4) take a suggested correction and re-run the program to test if it is now correct

Main:
Have pre-set courses for the children to complete to get from one hoop / mat to another hoop / mat, with the courses
becoming more complex
Can vary these courses throughout the lesson, or else let the children design their own courses, so that they are not
completing the same course more than once
A course can be made more difficult by:

 not being straight i.e. the children have to use instructions other than forwards

 banning the use of left and right, so that left turn and right turn have to be used

 adding obstacles e.g. cones

 having something that the children need to collect on the way e.g. bean bags
Each course should be within an enclosed, marked out area.
Tell the children that they are going to take it in turns to:

 be a robot

 program a robot
Explain to the children that they will have to program a robot (partner) to get from one hoop / mat to the other hoop /
mat, using the fewest steps / instructions possible
Remind the children that the child that is the robot can only move according to the instructions given to them
Children to verbally give one instruction at a time e.g. to say ‘forward 1’, wait for their partner to stop, then say’ turn
left’, wait for their partner to stop, say ‘forward 3’ etc
As the children become more confident, ask them to give more than one instruction at once e.g. ‘forward 1, turn left,
forward 3’
For children who are completing the task confidently, ask them to write their program on paper / a whiteboard, before
running it
Children to then fix any errors they find in their written program once they have run it
Explain that all grown up computer programmers make mistakes and important part of their work is to test their
programmes and correct any errors
Emphasise that this means that the children should show their corrections, rather than pretend that their program
prediction is always perfect and without any errors

Plenary:
Revise the meaning of the key vocabulary from the lesson: sequence and program (as a verb) and program (as a
noun)
What problems did the children encounter during the lesson e.g. partners taking bigger or smaller steps than they
expected, partners forgetting to say how many steps
How did the children overcome these problems e.g. agreeing a uniform step size
How could we make the courses more challenging and what other instructions could be added e.g. require different
sized steps, require a diagonal turn, require a jump, require a hop to avoid an obstacle, such as a ‘pressure pad’ etc
What mistakes did the children who tried to write their programmes before running them make e.g. forgetting the
number of steps, missing out steps, getting left and right mixed up
How did the children overcome these problems e.g. by turning to face the direction that they would be facing at a given
point in the course
Children complete the pupil column of the assessment for the lesson

2

To write and
follow
instructions
written in ‘code’

To begin to
understand what
‘code’ and
‘algorithms’ are

To understand
what ‘debugging’
means

(45 mins)

This lesson involves a similar structure to the previous one, but introduces the terms ‘code’ and ‘algorithm’, and
explains what these terms mean
It also asks the children to write their instructions in symbols as ‘code’, rather than in words

Intro:
Ask the children to think, pair, share the instructional words that we used in the previous lesson, and revise these using
the cards from Lesson 1
Ask the children to think, pair, share the meaning of the key vocabulary from the previous lesson: sequence, program
(as a verb) and program (as a noun), and continually reinforce these terms in today’s lesson
Ask the children to think, pair, share some examples of sequences that they often perform e.g. brushing their teeth,
getting dressed etc – discuss any examples given (or introduce one) that are not sequences because they can be
performed in a different order e.g. making breakfast
Revise how we use sequences of instructions to tell devices and the software on them what they should do
Ask the children to think, pair, share some of what we did in the previous lesson
Explain that grown up computer programmers have to use special languages to instruct computers, in the same way
that we need to use French to give instructions to a person who only speaks French
Explain that the language that computer programmers use to instruct computers is called ‘code’
Explain that this week we are going to learn to write in a ‘code’
Explain that we will be doing a similar activity to last week, but this week the ‘robots’ will only understand the ‘code’,
and not words like ‘forwards’ or ‘left’ – just like real devices and their software do not understand instructions given in
everyday English
Introduce the symbols for forwards, backwards, left, right, turn left and turn right, without their labels
Discuss what each symbol might mean and ask the children to justify their responses e.g. “the arrow pointing that way
means ‘go left’ because it is pointing to the left”
Show the children the symbols with their labels, and explain / revise what each symbol / word means, including
physically demonstrating how a child should move for each command
Write a short sequence in the style of the previous lesson e.g. ‘forwards, forwards, forwards, left, left, forwards,
forwards’.
Ask the children to write on their whiteboards how they think they would write this using the symbols that we will use for
our ‘code’ today (it would be )
Ask the children how we could make these instructions better / shorter (by using numbers of steps e.g. 322).
Explain that a sequence of instructions such as  or 322 is called an ‘algorithm’
Explain that we will be writing ‘algorithms’ using ‘code’ for our robots
Revise how a ‘program’ is a set of instructions for performing a task, such as getting from one point to another point
Explain that a ‘program' is made up of one or more ‘algorithms’, written in ‘code’
Tell the children that today’s ‘robots’ must ignore any verbal instructions, pointing, instructions written in words etc –
they can only do what the written ‘code’ tells them to do i.e. they can only do what they have been ‘programmed’ to do
Write some more sequences for the children to follow, using the symbols, and constantly reinforce the meaning of the
words ‘sequence’, ‘program’ (as a noun and as a verb), ‘code’ and ‘algorithm’:

 start with ‘forwards’ and ‘backwards’ only

 introduce ‘left’ and ‘right’ (to help the children tell left from right tell them to make the letter L with their thumb
and index finger)

 introduce ‘left turn’ and ‘right turn’
If some children do not end up in the same place as the other children, discuss with the class why this might have
happened
Can also write a different / incorrect program on a small whiteboard / piece of paper for one or more children to follow,
and then ask the children what the difference might be between the program that most of them followed and the
program that the others completed
Create a course and model how to complete the main activity
Debugging:

1) create a course for one child to come and be a robot for
2) write a program for the child robot to follow to navigate the course, but have a deliberate error in the program
3) ask the other children to think, pair, share to spot and correct the error in the program
4) take a suggested correction and re-run the program to test if it is now correct

Explain to the children that the process of testing code, and finding and fixing errors in it, is called ‘debugging’ – ‘bugs’

Setup courses in
advance of the lesson
(see ‘Main’ section of
lesson plan)

Hall or large space

Hoops, mats, cones,
bean bags

Instructional language
cards from previous
lesson

One set of instructional
language cards for this
lesson for display –
labelled and unlabelled:
1) print out, one per
page
2) enlarge
3) laminate
4) keep for next year

Enough sets of
instructional language
cards for this lesson for
each group:
1) print out ones with
labels and 6 on page
2) photocopy
3) laminate
4) keep for next year

Paper and pencils and /
or whiteboards and pens
(for intro and main)

Recording sheets

Assessment sheets

MUST:
create and follow
instructions written in
‘code’ e.g. 3

SHOULD:
write programmes in
symbols, before
running them, then test
and debug them

COULD:
design a course and
program for other
children to debug and /
or create and include
their own instructions
and corresponding
symbols

being mistakes in the code
Explain that debugging is something that all grown up computer programmers have to do

Main:
Have pre-set courses for the children to complete to get from one hoop / mat to another hoop / mat, with the courses
becoming more complex
Can vary these courses throughout the lesson, or else let the children design their own courses, so that they are not
completing the same course more than once
A course can be made more difficult by:

 not being straight i.e. the children have to use instructions other than forwards

 banning the use of left and right, so that left turn and right turn have to be used

 adding obstacles e.g. cones

 having something that the children need to collect on the way e.g. bean bags
Each course should be within an enclosed, marked out area
Explain to the children that they will have to program a robot (partner) to get from one hoop / mat to the other hoop /
mat, using the fewest steps / instructions possible
Remind the children that the child that is the robot can only follow the code
Children to write one piece of code at a time e.g. write ‘1’ and show their partner, wait for their partner to stop, then
write ‘2’ and show their partner, wait for their partner to stop etc
As the children become more confident, ask them to give more than one instruction at once e.g. write ‘1 2’ and
show their partner
For children who are completing the task confidently, ask them to write their program, before running it
Children to then fix any errors they find in their written program once they have run it
Emphasise that the children should show their corrections, rather than pretend that their program prediction is always
perfect and without any errors
Extension option 1:

1) children to design a course
2) write the program for it, but with one deliberate mistake
3) ask another pair / group to come and use their program to navigate the course, find the error and correct it

Extension option 2:
Children to design their own course to include some instructions, and some symbols for them, that they make up e.g. to
include a diagonal step forward - , a jump - etc

Plenary:
Revise the meaning of the key vocabulary from the lesson: sequence, program (as a verb), program (as a noun), code,
debug and algorithm
Discuss if using the code was easier or more difficult than giving the instructions in words (as we did in the previous
lesson) and why e.g. easier because it was quicker to write than the words; harder because you had to remember what
each symbol meant
What mistakes did the children who tried to write their programmes before running them make e.g. forgetting the
number of steps, missing out steps, getting left and right mixed up
How did the children overcome these problems e.g. by turning to face the direction that they would be facing at a given
point in the course
What other instructions could we add and what symbols could they be represented with e.g. large step forward - L,
diagonal step forward - , jump - , hop – H etc
Children complete the pupil column of the assessment for the lesson

© www.SaveTeachersSundays.com 2016

